Introduction

There are a number of rules known as the laws of logarithms. These allow expressions involving logarithms to be rewritten in a variety of different ways. The laws apply to logarithms of any base but the same base must be used throughout a calculation.

1. The laws of logarithms

The three main laws are stated here:

First Law

$$
\log A+\log B=\log A B
$$

This law tells us how to add two $\operatorname{logarithms~together.~Adding~} \log A$ and $\log B$ results in the logarithm of the product of A and B, that is $\log A B$.

For example, we can write

$$
\log _{10} 5+\log _{10} 4=\log _{10}(5 \times 4)=\log _{10} 20
$$

The same base, in this case 10, is used throughout the calculation. You should verify this by evaluating both sides separately on your calculator.

Second Law

$$
\log A-\log B=\log \frac{A}{B}
$$

So, subtracting $\log B$ from $\log A$ results in $\log \frac{A}{B}$.
For example, we can write

$$
\log _{e} 12-\log _{e} 2=\log _{e} \frac{12}{2}=\log _{e} 6
$$

The same base, in this case e, is used throughout the calculation. You should verify this by evaluating both sides separately on your calculator.

Third Law

$$
\log A^{n}=n \log A
$$

So, for example

$$
\log _{10} 5^{3}=3 \log _{10} 5
$$

You should verify this by evaluating both sides separately on your calculator.
Two other important results are

$$
\log 1=0, \quad \log _{m} m=1
$$

The logarithm of 1 to any base is always 0 , and the logarithm of a number to the same base is always 1 . In particular,

$$
\log _{10} 10=1, \quad \text { and } \quad \log _{\mathrm{e}} \mathrm{e}=1
$$

Exercises

1. Use the first law to simplify the following.
a) $\log _{10} 6+\log _{10} 3$,
b) $\log x+\log y$,
c) $\log 4 x+\log x$,
d) $\log a+\log b^{2}+\log c^{3}$.
2. Use the second law to simplify the following.
a) $\log _{10} 6-\log _{10} 3$,
b) $\log x-\log y$,
c) $\log 4 x-\log x$.
3. Use the third law to write each of the following in an alternative form.
a) $3 \log _{10} 5$,
b) $2 \log x$,
c) $\log (4 x)^{2}$,
d) $5 \ln x^{4}$,
e) $\ln 1000$.
4. Simplify $3 \log x-\log x^{2}$.

Answers

1. a) $\log _{10} 18, \quad$ b) $\log x y, \quad$ c) $\log 4 x^{2}, \quad$ d) $\log a b^{2} c^{3}$.
2. a) $\log _{10} 2$,
b) $\log \frac{x}{y}$,
c) $\log 4$.
3. a) $\log _{10} 5^{3}$ or $\log _{10} 125$,
b) $\log x^{2}$,
c) $2 \log (4 x)$,
d) $20 \ln x$ or $\ln x^{20}$,
e) $1000=10^{3}$ so $\ln 1000=3 \ln 10$.
4. $\log x$.
